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Abstract. Deposition of sediment particles is an essential economical and technical problem for the design of conveyance carrying sediment laden channels such as sewers, irrigation channels and in general, rigid boundary channels. This paper focuses on the artificial neural network (ANN) analysis technique used to estimate the critical flow velocity for incipient deposition condition of sediment particles in rigid boundary channels. This is achieved by training the network to extrapolate experimental data which are available in literature. The arranging of flow and sediment variables applied in the methods based on the prior knowledge of the traditional analysis, using the laws of hydrodynamics. Three different ANN techniques, namely radial basis function-based neural network (RBF), generalized regression neural network (GRNN) and feed-forward back propagation (FFBP) are applied. It may be concluded that all three methods have well performance in estimation of water critical velocity for incipient deposition of particles. The forecast results are in good agreement with the measured ones. A simulation also shows that the FFBP model is superior to the other two ANN techniques. The results reveals that ANN technique can efficiently estimate critical velocity of flow using six input factors, including: the flow discharge, flow depth, channel bed slope, hydraulic radius, sediment concentration and median size of sediment particles.
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1. INTRODUCTION

The mechanism of sediment transport in rigid boundary channel is an important parameter for management of hydraulic projects. In the evolution of transport and sedimentation science, there has been more work done on the prediction of flow critical velocity and critical shear stress. The significance of this subject came from its tremendous impact on design of water constructions such as urban drainage channels, sewers as well as power plant intakes. In the past decades, the subject of sediment transport in fixed bed channel is receiving more interest because of its environmental effects. Deposition of sediment in urban drainage channels and sewer systems causes to be contaminated with toxic substances. De Sutter et al. (2003), Banasiak & Tait (2008) and Vongvisessomjai et al. (2010) carried out researchs on sediment transport in sewers and evaluated the former design criteria for non-deposition condition of flow in sewer systems. Two main approaches are applied for evaluating the sediment threshold condition namely, critical velocity and critical shear stress. Sediment transport modeling has been a challenging task in the field of hydraulic structures. Investigation on incipient motion of sediment based on critical velocity approach in rigid boundary channels by considering different sediment particle size and various channel cross sections developed by Novak & Nalluri (1984), El-Zaemy (1991), Ab-Ghani (1999) and Safari et al. (2011 & 2013). They are widely used because of their relatively simple structure and mathematical methods involved, and their ability to work with limited input data. Although, this type of model is not able to represent the spatial variability of channel cross section and sediment particle size that influence the value of flow critical velocity. Incipient motion models in rigid boundary channels differ from incipient motion models in loose boundary channels. Generally, incipient motion models in loose boundary channels predict more critical velocity than incipient motion models in rigid boundary channels (Safari et al. 2011). Incipient deposition should be closely related to the incipient motion. This condition is the threshold of movement or simply the threshold condition (Task Force Committee, 1966, Loveless, 1992). The quantity of incipient deposition critical velocity of flow is higher than the incipient motion critical velocity under the same flow condition (Safari et al. 2012 & 2013). Such hydrodynamic models succeeded in defining the essential factors of the problem. However, to get a discrete formula some important parameters were disregarded for simplicity, dummy constants were added for consistency, and some boundary conditions were considered for applicability. Consequently, it is questionable whether any formula can be applied successfully to a diversity of channel cross sections and sediment particle size. Nowadays, the neural networks approach has been applied to many branches of science. ANN approach is becoming a strong tool for providing hydraulic and environmental engineers with sufficient details for design purposes and management practices (Nagy et al, 2002). ANN has many distinct advantages. For example, it can approximate any arbitrary continuous functions, simulate a nonlinear system without a priori assumption of processes involved (ASCE, 2000 a,b). Recently, ANN techniques are used in the field of sediment transport. Nagy et al, (2002) used an artificial neural model to estimate the natural sediment discharge in rivers in terms of sediment load concentration.  Yitian & Gu (2003) developed a model for predicting flow and sediment transport in a river system by incorporating flow and sediment mass conservation equations into an ANN, using actual river network to design the ANN architecture, and expanding hydrological applications of the ANN modeling technique to sediment yield predictions. Sarangi & Bhattacharya (2005) developed two ANN models for the prediction of sediment yield and validated using the hydrographs and silt load data for a watershed in India. Cigizoglu & Alp (2006), Cigizoglu & Kisi (2006) Zhu et al (2007), Alp & Cigizoglu (2007) and Wang et al. (2008) used ANN methods for estimation of suspended sediment load. Dogan et al (2007) and Yang et al. (2009) carried out studies using ANN for estimation of total sediment load concentration. Rai & Mathur (2008) and Tayfur (2002) developed an ANN model for the computation of event-based temporal variation of sediment yield from the watersheds.

This study evaluates three neural networks approaches on incipient deposition of sediment in fixed bed channels using the RBF, GRNN and FFBP algorithms. The aim of the study is to estimate flow critical velocity in incipient deposition condition. Several trials were done to design the suitable architecture of the network. The models were trained with experimental data of variables selected on the basis of theoretical considerations of fluid and sediment hydrodynamics. The weights of the net were adjusted and the parameters of the model were fitted in order to give suitable estimates for flow critical velocity. 

2. EXPERIMENTAL DATA
Loveless (1992) studied sediment transport in rigid boundary channels particularly at the point where the sediment is about to deposit. In the experiments, it was concentrated on the incipient deposition condition. The experiments were carried out in several channels with different cross sections. One series of the experiments were conducted in circular, oval and rectangular channels. Two non-cohesive sand sizes were used to model the sediment having sizes of 0.45mm and 1.3mm respectively and the specific mass of the sand was assumed to be 2650
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. All the conduits in this series of experiments were constructed in length of 7.2m and had cross-sectional areas of 60. The other series of experiments were conducted in a U-shaped channel, 220mm wide and 7.0m long. Besides the two sediments used in the earlier experiments, angular non-cohesive granite chips having size of 6mm were also tested. The specific mass of the granite was assumed to be 2700
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. In the beginning of each experiment, the slope, flow and discharges were set at values producing non-deposit flow condition. Next the slope was gradually reduced until local deposition began to occur. The flow was then increased to clear the settled deposit and this procedure was repeated several times. In this way the incipient deposition condition could clearly be identified.
3. THE METHODS USED

3.1. RADIAL BASIS FUNCTION-BASED NEURAL NETWORKS

RBF were introduced by Lowe and Broomhead (1988). The RBF consists of two layers whose output nodes form a linear combination of the basis functions. The basis functions in the hidden layer produce a significant non-zero response to input stimulus only when the input falls within a small localized region of the input space. Hence, this paradigm is also known as a localized receptive field network (Lee and Chang 2003). Transformation of the inputs is essential for fighting the curse of dimensionality in empirical modeling. The type of input transformation of the RBF is the local nonlinear projection using a radial fixed shape basis function (Kisi & Cigizoglu, 2007). Before RBF simulation the spread constant and number of hidden layer were found with a simple trial-error approach adding some loops to the program codes. The hidden layer neurons numbers that give the minimum mean square errors (MSE) is found 10. The spreads that give the minimum MSE is 0.5.
3.2. GENERALIZED REGRESSION NEURAL NETWORKS

The generalized regression neural network was proposed by Specht (1991). This method does not require an iterative training procedure. However, approximates any arbitrary function between the input and output vectors, drawing the function estimate directly from the training data. Details of the GRNN are presented by Specht (1991) and Tsoukalas & Uhrig (1997). The GRNN consists of four layers: input layer, pattern layer, summation layer, and output layer. The number of input units in the first layer is equal to the total number of parameters. The first layer is fully connected to the second, pattern layer, where each unit represents a training pattern and its output is a measure of the distance of the input from the stored patterns (Kisi & Cigizoglu, 2007). Different spreads are examined in order to find the best one that gives the minimum MSE. The optimum spread is found 0.07 in this study.

3.3. FEED-FORWARD BACK PROPAGATION

The most common ANN approach is the back propagation algorithm. The FFBP distinguishes itself by the presence of one or more hidden layers, whose computation nodes are correspondingly called hidden neurons of the hidden units. The function of hidden neurons is to intervene between the external input and the network output in some useful manner. By adding one or more hidden layers, the network is able to extract higher order statistics. The source nodes in the input layer of the network supply respective elements of the activation pattern, which constitute the input signals applied to the neurons in the second layer. The output signals of the second layer are used as inputs to the third layer, and so on for the rest of the network (Kisi & Cigizoglu, 2007). Typically, the neurons in each layer of the network have as their inputs the output signals of the preceding layer only. The set of the output signals of the neurons in the output layer of the network constitutes the overall response of the network to the activation patterns applied by the source nodes in the input layer (Hagan and Menhaj, 1994). 
4. APPLICATION AND RESULTS

Three MATLAB codes were written for radial basis functions (RBF), generalized regression neural network (GRNN) and feed-forward back propagation (FFBP) and are employed for ANN simulations. Reviewing the incipient motion and deposition equations in rigid and loose boundary channels helps in selecting the effective factors of the phenomenon. Mathematical and empirical models of incipient motion and deposition of sediment in rigid and loose boundary channels are presented in table 1.
Table 1

Empirical and mathematical incipient motion and deposition models

	Incipient motion formulas in loose boundary channels
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Ackers & White (1973)                                                              
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Garde & Ranga Raju (1985)                                                        
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	Incipient motion formulas in rigid boundary channels
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Novak & Naluuri (1984)                                                            
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El – Zaemey (1991)                                                              
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Ab Ghani (1999)                                                                   
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Safari et al. (2011)                                                                
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	Incipient deposition formulas in rigid boundary channels

	Safari et al. (2012)                                                                
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Safari et al. (2013)

Rectangular channel                                                              
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Circular channel                                                                    
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U-shaped channel                                                                 
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In the Table 1, 
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 is flow critical velocity, g is gravity acceleration, d is median size of sediment particles, s is sediment relative density, Y is flow depth, D is diameter of pipe, Q is discharge and R is hydraulic radius. In ANN structures selection of input parameters is essential issue due to obtaining accurate results. Effective parameters must be selected and some unnecessary variables must be avoided. The most important parameters in sediment transport and threshold condition based on critical velocity approach are the water discharge per unit width q, the water depth Y, the longitudinal slope S, the sediment discharge per unit width 
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, the particles median diameter d, the sediment and fluid density 
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 and 
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, the kinematic viscosity 
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 and the acceleration gravity g. 
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 are constants and  sediment concentration 
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. Regarding empirical and mathematical models in Table 1 and fundamental parameters in sediment transport models based on critical velocity approach, the following expression is purposed: 
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Flow critical velocity 
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 is dependent variable and in independent parameters, sediment relative density s, kinematic viscosity 
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, acceleration gravity g and water density 
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 are constant.  Therefore, the final developed expression for critical velocity of flow yields:
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(2)
ANN network structure consisted of three layers, i.e. input layer, single hidden layer and output layer. The input layer was prepared using Loveless (1992) data. The application of the ANNs consisted of two steps. The first step was the training of the neural networks. This included six parameters of independent variables of equation 2 describing the input and flow critical velocity in incipient deposition of sediment particles data describing the output to the network. Once the training stage was completed the ANNs were applied to the testing data. Among the more than 206 set of data, incipient deposition condition was occurred just in 77 experiments. Therefore, 60 set of data (≈80%) were used for training the model and 17 set of data (≈20%) randomly selected to test or verify the model.
In order to ensure that each variable treated equally in a model, data are rescaled to an interval of [0, 1] (Dawson and Wilby, 2001). The performances of the three ANN models RBF, GRNN and FFBP were evaluated in terms of goodness-of-fit. The goodness-of-fit was examined by comparing the statistics of the results (MSE and 
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; Table 2) and the scatter plots of the observed and estimated incipient deposition critical velocity of flow. The predicted values of the three models were plotted against the observed value of sediment loss corresponding to 17 selected validation data sets (Figs. 1, 2 and 3). The comparisons between three ANN models based on Figs. 1, 2 and 3 indicate that under the same data requirement or the input combination, the FFBP technique generates better estimation than RBF and GRNN models do. 
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Fig. 1. Comparison of Observation and Estimation Values of incipient deposition

critical velocity by RBF
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Fig. 2. Comparison of Observation and Estimation Values of incipient deposition
critical velocity by GRNN
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Fig. 3. Comparison of Observation and Estimation Values of incipient deposition
critical velocity by FFBP

Table 2

Comparison the Regression and Mean Square Error values of three methods
	Method
	RBF
	GRNN
	FFBP
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	0.89
	0.82
	0.91

	MSE (
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	0.024
	0.004


The comparison between them indicates that FFBP provides much better estimation. The FFBP predicted values incipient deposition critical velocity were in close proximity of the observed values, whereas RBF and GRNN predicted values indicated a poorer match with the observed values. A network structure with one hidden layer having 4 nodes, and 6 input nodes in the input layer, FFBP (6, 4, 1) provided the best performance criteria, i.e. lowest MSE and highest 
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, for the testing set of data. In compression of three ANN techniques, GRNN had poorer performance among three models. Generally, it can be seen that the estimates of three ANN models are close to the measured data and they are in good agreement. It can be concluded that the ANN models can be used to detect hidden relationship between incipient deposition critical velocity and some important parameters of transport formulas or flow conditions such as average velocity, channel slope, water depth, sediment concentration, hydraulic radius and median particle diameter. In FFBP method the mean square error, i.e., the average of ratio of difference between measured and calculated to the measured is less than 6% by considering the maximum value of critical velocity of 1.09 m/s. The maximum MSE is less than 15% in GRNN method. It is demonstrated that the ANN models is capable of reproducing the sediment process in rigid boundary channel and can be effectively used for mapping flow variations.
5. CONCLUSION

This study details the application of ANNs to the problem of incipient deposition critical velocity estimation in rigid boundary channel. The FFBP networks are generally superior to the other two ANN techniques. Both the FFBP and RBF algorithms have shorter training time with respect to GRNN. Where has little or incomplete understanding of the problem to be solved, ANN methods are appropriate approaches for analyze the problem. It is concluded, that the neural networks models can be successfully applied for the estimation of incipient deposition critical velocity when other approaches cannot succeed due to the uncertainty and the stochastic nature of the sediment movement. The ANN can accept any number of effective variables as input parameters without omission or simplification as commonly done in the conventional models. In general, all of the three presented ANN methods can be employed in sediment transport problems.
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